A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction.

نویسندگان

  • Anabelle S Cornachione
  • Dilson E Rassier
چکیده

When activated muscle fibers are stretched, there is a long-lasting increase in the force. This phenomenon, referred to as "residual force enhancement," has characteristics similar to those of the "static tension," a long-lasting increase in force observed when muscles are stretched in the presence of Ca(2+) but in the absence of myosin-actin interaction. Independent studies have suggested that these two phenomena have a common mechanism and are caused either by 1) a Ca(2+)-induced stiffening of titin or by 2) promoting titin binding to actin. In this study, we performed two sets of experiments in which activated fibers (pCa(2+) 4.5) treated with the myosin inhibitor blebbistatin were stretched from 2.7 to 2.8 μm at a speed of 40 L(o)/s, first, after partial extraction of TnC, which inhibits myosin-actin interactions, or, second, after treatment with gelsolin, which leads to the depletion of thin (actin) filaments. We observed that the static tension, directly related with the residual force enhancement, was not changed after treatments that inhibit myosin-actin interactions or that deplete fibers from troponin C and actin filaments. The results suggest that the residual force enhancement is caused by a stiffening of titin upon muscle activation but not with titin binding to actin. This finding indicates the existence of a Ca(2+)-regulated, titin-based stiffness in skeletal muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms.

Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca(2+) activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca(2+)-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing differ...

متن کامل

Cooperative Mechanisms in the Activation Dependence of the Rate of Force Development in Rabbit Skinned Skeletal Muscle Fibers

Regulation of contraction in skeletal muscle is a highly cooperative process involving Ca(2+) binding to troponin C (TnC) and strong binding of myosin cross-bridges to actin. To further investigate the role(s) of cooperation in activating the kinetics of cross-bridge cycling, we measured the Ca(2+) dependence of the rate constant of force redevelopment (k(tr)) in skinned single fibers in which ...

متن کامل

The effect of altered temperature on Ca2(+)-sensitive force in permeabilized myocardium and skeletal muscle. Evidence for force dependence of thin filament activation

The effect of changes in temperature on the calcium sensitivity of tension development was examined in permeabilized cellular preparations of rat ventricle and rabbit psoas muscle. Maximum force and Ca2+ sensitivity of force development increased with temperature in both muscle types. Cardiac muscle was more sensitive to changes in temperature than skeletal muscle in the range 10-15 degrees C. ...

متن کامل

Ca 2 ' Regulation of Mechanical Properties of Striated Muscle Mechanistic Studies Using Extraction and Replacement of Regulatory Proteins Richard

Selective extraction of protein subunits from permeabilized preparations of skeletal muscle and myocardium has become an important tool in investigations of the mechanisms underlying the regulation of tension and shortening velocity in these muscles. In some studies, extraction or exchange has been used as a means of introducing genetically engineered or alternate isoforms of a protein into a m...

متن کامل

Force enhancement after stretch in mammalian muscle fiber: no evidence of cross-bridge involvement.

Stretching of activated skeletal muscles induces a force increase above the isometric level persisting after stretch, known as residual force enhancement (RFE). RFE has been extensively studied; nevertheless, its mechanism remains debated. Unlike previous RFE studies, here the excess of force after stretch, termed static tension (ST), was investigated with fast stretches (amplitude: 3-4% sarcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 302 3  شماره 

صفحات  -

تاریخ انتشار 2012